Infineon today announced that it has successfully tested the industry’s first
advanced memory buffer (AMB) test chip for next generation server modules using
DDR2 DRAM. The AMB is the central part of fully buffered dual in-line memory modules (FB-DIMMs), which
will be the new standard for server memory. By combining its in-house expertise
in high-frequency chip design and DRAM technology to implement a complete
solution Infineon gains a leadership position in the development of AMBs and
FB-DIMMs. Engineering samples of the FB-DIMM for DDR2 DRAM are planned to be available
in the fourth quarter of 2004, market introduction is planned for the second
half of 2005.

The Infineon AMB test chip implements for the first time the crucial
high-speed input/output stages together with other high-speed functionality such
as the data-insertion and data-forwarding circuits in Infineon’s own logic
process technology. The FB-DIMM standard foresees a data multiplexing by a
factor of six to higher speeds to reduce the physical width of the memory
channel and to minimize the throughput latency. The Jedec standard defines a
maximum required datarate per IO pin of 4.8 Gb/s for DDR2 800. Infineon’s AMB
test chip already runs at 6.0 Gb/s, giving substantial system margin and
ensuring lowest bit-error rates. By achieving this major development milestone
Infineon can now further optimize the circuit design with real-world measured
data.

FBD Infineon DDR2 FB DIMM Sample In Q4

Infineon today announced that it has successfully tested the industry’s first
advanced memory buffer (AMB) test chip for next generation server modules using
Double Data Rate2 (DDR2) Dynamic Random Access Memory (DRAM). The AMB is the
central part of fully buffered dual in-line memory modules (FB-DIMMs), which
will be the new standard for server memory. By combining its in-house expertise
in high-frequency chip design and DRAM technology to implement a complete
solution Infineon gains a leadership position in the development of AMBs and
FB-DIMMs.

The continuous introduction of high speed DRAM technologies from DDR2 to
DDR3, and the increasing amount of data stored and processed in servers poses
technical challenges that require a novel and innovative server memory
architecture. Memory modules used today have parallel direct access to the bus
(multi-drop-bus architecture). The FB-DIMM channel architecture introduces
point-to-point connections between the memory controller and the first module on
the channel, and between subsequent modules down the channel. This makes the
bus-loading independent from the DRAM input/output (IO) speed and thereby
enables high memory capacity with high-speed DRAMs. The AMB chip located on each
FB-DIMM collects and distributes the data from or to the DRAMs on the DIMM,
buffers the data internally on the chip and forwards or receives it to the next
DIMM or memory controller. Hence, the buffer chip is the crucial point in the
development of the new FB-DIMM memory architecture.

”We are committed to become the industry leading vendor for fully buffered
DIMM and expect to realize a major sales share with this high margin and high
volume product targeting the server and workstation markets,“ said Dr. Carsten
Gatzke, Senior Director Product Marketing of Infineon’s Memory Products business
group. “Infineon’s combined know-how in high-frequency chip design and its
extensive DRAM expertise are the driving forces behind the currently achieved
significant milestone,” added Christian Scherp, Vice President and General
Manger of Infineon’s North America Wireline Communications Business Group. “We
will use this extensive competence to boost further development of advanced
memory buffers and address emerging markets with our leading edge solution.”

”The new fully-buffered technology, with a specification standardized in
Jedec (Joint Electronic Device Engineering Council), provides an excellent
opportunity to simultaneously increase both the speed of the DIMMs and the
memory capacity on server platforms. FB-DIMM will also offer a smooth transition
from DDR2 to DDR3 DRAM generations. This has the real potential to be an
important new server memory technology in 2006 and onwards,” said Tom Macdonald,
Vice President and General Manager of the Advanced Chipset Division at Intel.
”Suppliers of server equipment recognize the need for a long-term buffered DRAM
memory solution and the industry enabling activities with companies like
Infineon Technologies will accelerate and ease the introduction of such an
innovative and high-performing memory technology.”

The Infineon AMB test chip implements for the first time the crucial
high-speed input/output stages together with other high-speed functionality such
as the data-insertion and data-forwarding circuits in Infineon’s own logic
process technology. The FB-DIMM standard foresees a data multiplexing by a
factor of six to higher speeds to reduce the physical width of the memory
channel and to minimize the throughput latency. The Jedec standard defines a
maximum required datarate per IO pin of 4.8 Gb/s for DDR2 800. Infineon’s AMB
test chip already runs at 6.0 Gb/s, giving substantial system margin and
ensuring lowest bit-error rates. By achieving this major development milestone
Infineon can now further optimize the circuit design with real-world measured
data.

Engineering samples of the FB-DIMM for DDR2 DRAM are planned to be available
in the fourth quarter of 2004, market introduction is planned for the second
half of 2005.